Graphical Causal Models

نویسندگان

  • Felix Elwert
  • F. Elwert
چکیده

This chapter discusses the use of directed acyclic graphs (DAGs) for causal inference in the observational social sciences. It focuses on DAGs’ main uses, discusses central principles, and gives applied examples. DAGs are visual representations of qualitative causal assumptions: They encode researchers’ beliefs about how the world works. Straightforward rules map these causal assumptions onto the associations and independencies in observable data. The two primary uses of DAGs are (1) determining the identifiability of causal effects from observed data and (2) deriving the testable implications of a causal model. Concepts covered in this chapter include identification, d-separation, confounding, endogenous selection, and overcontrol. Illustrative applications then demonstrate that conditioning on variables at any stage in a causal process can induce as well as remove bias, that confounding is a fundamentally causal rather than an associational concept, that conventional approaches to causal mediation analysis are often biased, and that causal inference in social networks inherently faces endogenous selection bias. The chapter discusses several graphical criteria for the identification of causal effects of single, time-point treatments (including the famous backdoor criterion), as well identification criteria for multiple, time-varying treatments.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Graphical models, causal inference, and econometric models

A graphical model is a graph that represents a set of conditional independence relations among the vertices (random variables). The graph is often given a causal interpretation as well. I describe how graphical causal models can be used in an algorithm for constructing partial information about causal graphs from observational data that is reliable in the large sample limit, even when some of t...

متن کامل

Toward Learning Graphical and Causal Process Models

We describe an approach to learning causal models that leverages temporal information. We posit the existence of a graphical description of a causal process that generates observations through time. We explore assumptions connecting the graphical description with the statistical process and what one can infer about the causal structure of the process under these assumptions.

متن کامل

Counterfactuals, graphical causal models and potential outcomes: Response to Lindquist and Sobel

Lindquist and Sobel claim that the graphical causal models they call "agnostic" do not imply any counterfactual conditionals. They doubt that "causal effects" can be discovered using graphical causal models typical of SEMs, DCMs, Bayes nets, Granger causal models, etc. Each of these claims is false or exaggerated. They recommend instead that investigators adopt the "potential outcomes" framewor...

متن کامل

Graphical Models for Surrogates

Recently, it has been demonstrated that graphical models promise some potential for expressing causal concepts, see for example Pearl (2000), Lauritzen (2001), or Dawid (2002). The causal interpretation is most direct in models based on directed acyclic graphs, whereas causal interpretation for chain graph models generally is more subtle and complex (Lauritzen and Richardson 2002). In the artic...

متن کامل

Causal Effect Identification in Acyclic Directed Mixed Graphs and Gated Models

We introduce a new family of graphical models that consists of graphs with possibly directed, undirected and bidirected edges but without directed cycles. We show that these models are suitable for representing causal models with additive error terms. We provide a set of sufficient graphical criteria for the identification of arbitrary causal effects when the new models contain directed and und...

متن کامل

Bayesian graphical models, intention-to-treat, and the rubin causal Model

In clinical trials with significant noncompliance the standard intention-to-treat analyses sometimes mislead. Rubin’s causal model provides an alternative method of analysis that can shed extra light on clinical trial data. Formulating the Rubin Causal Model as a graphical model facilitates model communication and computation.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013